2024
Yu H. et al. 2024. Biogenic secondary organic aerosol participates in plant interactions and herbivory defense. Science Vol. 385, No. 6714 https://doi.org/10.1126/science.ado6779
2023
He, M. et al. 2023. Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere. Nature 382: 1308-1314. doi: 10.1126/science.adh2526
2020 - 2022
Wang, M., et al. 2022. Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature 605: 483-489 doi: 10.1038/s41586-022-04605-4
Migliavacca, M., et al. 2021. The three major axes of terrestrial ecosystem function. Nature 598: 468-472 doi: 10.1038/s41586-021-03939-9
Cuni-Sanchez, A. et al. 2021. High aboveground carbon stock of African tropical montane forests. Nature 596: 536-542. doi: 10.1038/s41586-021-03728-4
He, X.-C. et al. 2021. Role of iodine oxoacids in atmospheric aerosol nucleation. Science 371: 589-595. doi: 10.1126/science.abe0298
Daellenbach, K.R et al. 2020. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 587: 414–419. doi: 10.1038/s41586-020-2902-8
Wang M. et al. 2020. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 581: 184–189. doi: 10.1038/s41586-020-2270-4
2017 - 2019
McFiggans G. et al. 2019. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 565: 587–593. doi: 10.1038/s41586-018-0871-y
Yao L. et al. 2018. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science 361: 278-281. DOI: 10.1126/science.aao4839
Kulmala M. 2018. Build a global Earth observatory. Science doi: 10.1038/d41586-017-08967-y
Sun Y. et al. 2017. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358. doi: 10.1126/science.aam5747
INAR Finland Network publication (FMI): Ovadnevaite et al. 2017. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 546: 637–641. DOI: 10.1038/nature22806
2014-2016
Dunne E.M. et al. 2016. Global atmospheric particle formation from CERN CLOUD measurements. Science 354: 1119-1124. DOI: 10.1126/science.aaf2649
Wang J. et al. 2016. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature 539: 416–419: DOI: 10.1038/nature19819
Mikko Sipilä S. et al. 2016. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature 537: 532–534: DOI:10.1038/nature19314 5.9.2016
Kirkby, J. et al. 2016. Ion-induced nucleation of pure biogenic particles. Nature 533: 521–526. http://dx.doi.org/10.1038/nature17953
Tröstl, J. et al. 2016. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533: 527–531. http://dx.doi.org/10.1038/nature18271
Bianchi, F. et al. 2016. New particle formation in the free troposphere: A question of chemistry and timing. Science 352: 1109–1112. http://science.sciencemag.org/content/early/2016/05/24/science.aad5456
Kulmala M. 2015. Atmospheric chemistry: China’s choking cocktail. Nature 526: 497–499. doi:10.1038/526497a 21.10.2015
Riccobono F. et al. 2014. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science 344: 717-721. doi: 10.1126/science.1243527 16.5.2014
Ehn M. et al. 2014. A large source of low-volatility secondary organic aerosol. Nature 506: 476–479. doi:10.1038/nature13032 27.2.2014
2011-2013
Almeida, J. et al. 2013. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature 502: 359-363. doi:10.1038/nature12663
Cappa, CD. et al. 2013. Response to Comment on "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon". Science 339: 393. doi:10.1126/science.1230260
Kulmala M et al. Direct Observations of Atmospheric Aerosol Nucleation. SCIENCE 339: 943-946.doi:10.1126/science.1227385
Cappa C.D. et al. Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. SCIENCE 337. 1078-1081: doi:10.1126/science.1223447
Yvon-Durocher G. et al. Reconciling differences in the temperature-dependence of ecosystem respiration across time scales and ecosystem types. NATURE 487: 472-476. doi:10.1038/nature11205
Mauldin RL. et al. A new atmospherically relevant oxidant of sulphur dioxide. NATURE 488: 193–196. doi:10.1038/nature11278
Kulmala M. and Petäjä T. Soil Nitrites Influence Atmospheric Chemistry. SCIENCE 333: 1586-1587. doi:10.1126/science.1211872
Kirkby J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. NATURE 476: 429–433. doi:10.1038/nature10343
2008-2010
Sipilä M. et al. The role of sulphuric acid in atmospheric nucleation. SCIENCE 327: 1243-1246. doi:10.1126/science.1180315
Virtanen A. et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467: 824-827. doi:10.1038/nature09455
Kiendler-Scharr A. et al. New particle formation in forests inhibited by isoprene emissions. Nature 461: 381-384. doi:10.1038/nature08292
Arneth A. et al. Clean the air, heat the planet?. Science 326: 672-673. doi:10.1126/science.1181568
Jimenez J.L. et al. Evolution of Organic Aerosols in the Atmosphere. Science 326: 1525 - 1529. DOI: 10.1126/science.1180353
Magnani F. et al. Ecologically implausible carbon response?. Nature 451: E1-E3. doi:10.1038/nature06579
Piao S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451: 49-52. doi:10.1038/nature06444
Rosenfeld D. et al. Flood or drought: How do aerosols affect precipitation?. Science 321: 1309-1313. DOI: 10.1126/science.1160606
Winkler P.M. et al. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319: 1374-1377. DOI: 10.1126/science.1149034
2005-2007
Kulmala M. et al. Toward Direct Measurement of Atmospheric Nucleation, Science 318: 89-92. DOI: 10.1126/science.1144124
Magnani F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 848-852. doi:10.1038/nature05847
Tunved P. et al. High natural aerosol loading over boreal forests. Science 312: 261-263. DOI: 10.1126/science.1123052
O'Dowd C.D. et al. Marine aerosols and iodine emissions. Nature 433: E13-E14. doi:10.1038/nature03372
Ciais P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533. doi:10.1038/nature03972
Berndt O. et al. Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 307: 698-700. DOI: 10.1126/science.1104054
2002-2004
Hari P. et al. Ultraviolet light and leaf emission of NOX. Nature 422: 134. DOI: 10.1038/422134a
Kulmala M. How particles nucleate and grow. Science 302: 1000-1001. DOI: 10.1126/science.1090848
O'Dowd C.D. et al. Atmospheric particles from organic vapours, Nature 416: 497-498. doi:10.1038/416497a
O'Dowd C.D. et al. Marine aerosol formation from biogenic iodide emissions. Nature 417: 632-636. doi:10.1038/nature00775
1999-2001
Charlson R.J. et al. Atmospheric science - Reshaping the theory of cloud formation. SCIENCE 292: 2025-2026. DOI: 10.1126/science.1060096
Valentini R. et al. Respiration as the main determinant of carbon balance in European forests. NATURE 404: 861-865. doi:10.1038/35009084
Kulmala M. et al. Stable sulphate clusters as a source of new atmospheric particles. NATURE 404: 66-69: doi:10.1038/35003550
1996-1998
Kulmala M. et al. Clouds without supersaturation. Nature 388: 336-337.