Nature and Science publications

Nature and Science publications

2024

Yu H. et al. 2024. Biogenic secondary organic aerosol participates in plant interactions and herbivory defense. Science Vol. 385, No. 6714 https://doi.org/10.1126/science.ado6779

2023

He, M. et al. 2023. Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere. Nature 382: 1308-1314. doi: 10.1126/science.adh2526

2020 - 2022

Wang, M., et al. 2022. Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature 605: 483-489 doi: 10.1038/s41586-022-04605-4

Migliavacca, M., et al. 2021. The three major axes of terrestrial ecosystem function. Nature 598: 468-472 doi: 10.1038/s41586-021-03939-9

Cuni-Sanchez, A. et al. 2021. High aboveground carbon stock of African tropical montane forests. Nature 596: 536-542. doi: 10.1038/s41586-021-03728-4

He, X.-C. et al. 2021. Role of iodine oxoacids in atmospheric aerosol nucleation. Science 371: 589-595. doi: 10.1126/science.abe0298

Daellenbach, K.R et al. 2020. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 587: 414–419. doi: 10.1038/s41586-020-2902-8

Wang M. et al. 2020. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 581: 184–189. doi: 10.1038/s41586-020-2270-4

2017 - 2019

McFiggans G. et al. 2019. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 565: 587–593. doi: 10.1038/s41586-018-0871-y

Yao L. et al. 2018. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science 361: 278-281. DOI: 10.1126/science.aao4839

Kulmala M. 2018. Build a global Earth observatory. Science doi: 10.1038/d41586-017-08967-y

Sun Y. et al. 2017. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358. doi: 10.1126/science.aam5747

INAR Finland Network publication (FMI): Ovadnevaite et al. 2017. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 546: 637–641. DOI: 10.1038/nature22806

2014-2016

Dunne E.M. et al. 2016. Global atmospheric particle formation from CERN CLOUD measurements. Science 354: 1119-1124. DOI: 10.1126/science.aaf2649

Wang J. et al. 2016. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature 539: 416–419: DOI: 10.1038/nature19819

Mikko Sipilä S. et al. 2016. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature 537: 532–534: DOI:10.1038/nature19314 5.9.2016

Kirkby, J. et al. 2016. Ion-induced nucleation of pure biogenic particles. Nature 533: 521–526. http://dx.doi.org/10.1038/nature17953

Tröstl, J. et al. 2016. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533: 527–531. http://dx.doi.org/10.1038/nature18271

Bianchi, F. et al. 2016. New particle formation in the free troposphere: A question of chemistry and timing. Science 352: 1109–1112. http://science.sciencemag.org/content/early/2016/05/24/science.aad5456

Kulmala M. 2015. Atmospheric chemistry: China’s choking cocktail. Nature 526: 497–499. doi:10.1038/526497a 21.10.2015

Riccobono F. et al. 2014. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science 344: 717-721. doi: 10.1126/science.1243527 16.5.2014

Ehn M. et al. 2014. A large source of low-volatility secondary organic aerosol. Nature 506: 476–479. doi:10.1038/nature13032 27.2.2014

2011-2013

Almeida, J. et al. 2013. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature 502: 359-363. doi:10.1038/nature12663

Cappa, CD. et al. 2013. Response to Comment on "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon". Science 339: 393. doi:10.1126/science.1230260

Kulmala M et al. Direct Observations of Atmospheric Aerosol Nucleation. SCIENCE 339: 943-946.doi:10.1126/science.1227385

Cappa C.D. et al. Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. SCIENCE 337. 1078-1081: doi:10.1126/science.1223447

Yvon-Durocher G. et al. Reconciling differences in the temperature-dependence of ecosystem respiration across time scales and ecosystem types. NATURE 487: 472-476. doi:10.1038/nature11205

Mauldin RL. et al. A new atmospherically relevant oxidant of sulphur dioxide. NATURE 488: 193–196. doi:10.1038/nature11278

Kulmala M. and Petäjä T. Soil Nitrites Influence Atmospheric Chemistry. SCIENCE 333: 1586-1587. doi:10.1126/science.1211872

Kirkby J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. NATURE 476: 429–433. doi:10.1038/nature10343

2008-2010

Sipilä M. et al. The role of sulphuric acid in atmospheric nucleation. SCIENCE 327: 1243-1246. doi:10.1126/science.1180315

Virtanen A. et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467: 824-827. doi:10.1038/nature09455

Kiendler-Scharr A. et al. New particle formation in forests inhibited by isoprene emissions. Nature 461: 381-384. doi:10.1038/nature08292

Arneth A. et al. Clean the air, heat the planet?. Science 326: 672-673. doi:10.1126/science.1181568

Jimenez J.L. et al. Evolution of Organic Aerosols in the Atmosphere. Science 326: 1525 - 1529. DOI: 10.1126/science.1180353

Magnani F. et al. Ecologically implausible carbon response?. Nature 451: E1-E3. doi:10.1038/nature06579

Piao S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451: 49-52. doi:10.1038/nature06444

Rosenfeld D. et al. Flood or drought: How do aerosols affect precipitation?. Science 321: 1309-1313. DOI: 10.1126/science.1160606

Winkler P.M. et al. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319: 1374-1377. DOI: 10.1126/science.1149034

2005-2007

Kulmala M. et al. Toward Direct Measurement of Atmospheric Nucleation, Science 318: 89-92. DOI: 10.1126/science.1144124

Magnani F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 848-852. doi:10.1038/nature05847

Tunved P. et al. High natural aerosol loading over boreal forests. Science 312: 261-263. DOI: 10.1126/science.1123052

O'Dowd C.D. et al. Marine aerosols and iodine emissions. Nature 433: E13-E14. doi:10.1038/nature03372

Ciais P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533. doi:10.1038/nature03972

Berndt O. et al. Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 307: 698-700. DOI: 10.1126/science.1104054

2002-2004

Hari P. et al. Ultraviolet light and leaf emission of NOX. Nature 422: 134. DOI: 10.1038/422134a

Kulmala M. How particles nucleate and grow. Science 302: 1000-1001. DOI: 10.1126/science.1090848

O'Dowd C.D. et al. Atmospheric particles from organic vapours, Nature 416: 497-498. doi:10.1038/416497a

O'Dowd C.D. et al. Marine aerosol formation from biogenic iodide emissions. Nature 417: 632-636. doi:10.1038/nature00775

1999-2001

Charlson R.J. et al. Atmospheric science - Reshaping the theory of cloud formation. SCIENCE 292: 2025-2026. DOI: 10.1126/science.1060096

Valentini R. et al. Respiration as the main determinant of carbon balance in European forests. NATURE 404: 861-865. doi:10.1038/35009084

Kulmala M. et al. Stable sulphate clusters as a source of new atmospheric particles. NATURE 404: 66-69: doi:10.1038/35003550

1996-1998

Kulmala M. et al. Clouds without supersaturation. Nature 388: 336-337.